
c h a p t e r  8
What If the DIsturbances have 
nonzero expectatIons or DIfferent 
varIances?

281

S
N
L

281

8.0 What We Need to Know When We Finish This Chapter  281

8.1 Introduction  283

8.2 Suppose the εi’s Have a Constant Expected Value That Isn’t Zero  284

8.3 Suppose the εi’s Have Different Expected Values  288

8.4 Suppose Equation (5.6) Is Wrong  289

8.5 What’s the Problem?  290

8.6 σi
2, εi

2, ei
2, and the White Test  294

8.7 Fixing the Standard Deviations  299

8.8 Recovering Best Linear Unbiased Estimators  301

8.9 Example: Two Variances for the Disturbances  304

8.10 What If We Have Some Other Form of Heteroscedasticity?  313

8.11 Conclusion  314

 Exercises  315

8.0 What We Need to Know When We Finish This Chapter

The εi’s must have the same expected value for our regression to make any 
sense. However, we can’t tell if the εi’s have a constant expected value that 

jawalsh
Rectangle



282  Chapter 8

S
N
L
282

is different from zero, and it doesn’t make any substantive difference. If the 
disturbances have different variances, ordinary least squares (OLS) estimates 
are still unbiased. However, they’re no longer best linear unbiased (BLU). In 
addition, the true variances of b and a are different from those given by the 
OLS variance formulas. In order to conduct inference, either we can estimate 
their true variances, or we may be able to get BLU estimators by transforming 
the data so that the transformed disturbances share the same variance. Here 
are the essentials.

1. Section 8.2: If E(εi) equals some constant other than zero, b is still 
an unbiased estimator of β and a is still an unbiased estimator of the 
fixed component of the deterministic part of yi.

2. Section 8.2: An identification problem arises when we don’t have 
a suitable estimator for a parameter whose value we would like to 
estimate.

3. Section 8.2: A normalization is a value that we assign to a parameter 
when we don’t have any way of estimating it and when assigning a 
value doesn’t have any substantive implications.

4. Section 8.2: If E(εi) equals some constant other than zero, it wouldn’t 
really matter and we couldn’t identify this constant. Therefore, we  
always normalize it to zero.

5. Section 8.3: If E(εi) is different for each observation, then the obser-
vations don’t come from the same population. In this case, b and a 
don’t estimate anything useful.

6. Section 8.4: When the disturbances don’t all have the same variance, 
it’s called heteroscedasticity.

7. Section 8.4: The OLS estimators b and a remain unbiased for β and α 
regardless of what we assume for V(εi).

8. Section 8.5: The OLS estimators b and a are not BLU and their true 
variances are probably not estimated accurately by the OLS variance 
formulas.

9. Section 8.6: An auxiliary regression does not attempt to estimate a 
population relationship in an observed sample. It provides supplemen-
tal information that helps us interpret regressions that do.

10. Section 8.6: The White test identifies whether heteroscedasticity is 
bad enough to distort OLS variance calculations.

11. Equation (8.15), section 8.7: The White heteroscedasticity-consistent 
variance estimator for b is
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 It and the corresponding variance estimator for a are consistent even if 
heteroscedasticity is present.

12. Equation (8.19), section 8.8: Weighted least squares (WLS) provides 
BLU estimators for β and α if the different disturbance variances are 
known or can be estimated:
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13. Section 8.10: Heteroscedasticity can take many forms. Regardless, 
the White heteroscedasticity-consistent variance estimator provides 
trustworthy estimates of the standard deviations of OLS estimates. In 
contrast, WLS estimates require procedures designed specifically for 
each heteroscedastic form.

8.1 Introduction

We now know how to fit a line to a sample and how to extract as much infor-
mation as possible from that line regarding the underlying population from 
which our sample was drawn. Now we have to talk about what could go 
wrong. We’ll examine each of the assumptions that we made in chapter 5, 
beginning in this chapter and continuing through the three that follow.

In sections 8.2 and 8.3, we’ll discuss what happens if our first assumption 
about the properties of the εi’s are incorrect. That assumption appeared in 
equation (5.5):

E εi( ) = .0

As we’ll see, violations of this assumption are either trivial or fatal. In the first 
case, b is still the BLU estimator. In the second, it is useless. Consequently, in 
practice we never question the assumption of equation (5.5).

This begs the question of why we raise it here. First, we do so to demon-
strate that we’re not afraid to examine and justify any of the assumptions on 
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